Applying Mathematica and webMathematica to graph coloring
نویسندگان
چکیده
منابع مشابه
Applying Mathematica and webMathematica to graph coloring
This paper analyzes some graph issues by using the symbolic program Mathematica and its version for theWeb, webMathematica. In particular, we consider the problem of graph coloring: the assignment of colors to the vertices/edges of the graph such that adjacent vertices/edges are colored differently. In addition, we address the problem of obtaining the tenacity of binomial trees with Mathematica...
متن کاملGraph Coloring with web Mathematica
Coloring of a graph is an assignment of colors either to the edges of the graph G, or to vertices, or to maps in such a way that adjacent edges/vertices/maps are colored differently. We consider the problem of coloring graphs by using webMathematica which is the new web-based technology. In this paper, we describe some web-based interactive examples on graph coloring with webMathematica.
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولGraph coloring , perfect graphs 1 Introduction to graph coloring
Let us improve this bound. Assume that G is a connected graph and T is its spanning tree rooted at r. Let us consider an ordering of V (G) in which each vertex v appears after its children in T . Now, for v 6= r we have |N(vi) ∩ {v1, . . . , vi−1}| ≤ deg v − 1, so c(vi) ≤ deg vi for vi 6= r. Unfortunately, the greedy may still need to use ∆(G) + 1 colors if deg r = ∆(G) and each child of r happ...
متن کاملIntroduction to Graph Coloring
A k-coloring of a graph G = (V,E) is a function c : V → C, where |C| = k. (Most often we use C = [k].) Vertices of the same color form a color class. A coloring is proper if adjacent vertices have different colors. A graph is k-colorable if there is a proper k-coloring. The chromatic number χ(G) of a graph G is the minimum k such that G is k-colorable. Let H and G be graphs. The disjoint union ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Future Generation Computer Systems
سال: 2007
ISSN: 0167-739X
DOI: 10.1016/j.future.2006.10.011